Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining
نویسندگان
چکیده
Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g. 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras.
منابع مشابه
Designing Tolerance Chart and Process for CNC Machining Parts
The map and the model designed by a designer and presented to a manufacturer in the form of a map is the result of his knowledge and innovation. The manufacturer, in turn, uses his best effort to produce a part accordingly. However, because of production problems and raw material, producing a precise part is very difficult and costly. One of the most important problems in this regard is designi...
متن کاملDesigning Tolerance Chart and Process for CNC Machining Parts
The map and the model designed by a designer and presented to a manufacturer in the form of a map is the result of his knowledge and innovation. The manufacturer, in turn, uses his best effort to produce a part accordingly. However, because of production problems and raw material, producing a precise part is very difficult and costly. One of the most important problems in this regard is designi...
متن کاملAdaptive Control of Machining Process Using Electrical Discharging Method (EDM) Based on Self-Tuning Regulator (STR)
In order to improve the optimal performance of a machining process, a booster to improve the serve control system performance with high stability for EDM is needed. According to precise movement of machining process using electrical discharge (EMD), adaptive control is proposed as a major option for accuracy and performance improvement. This article is done to design adaptive controller based o...
متن کاملMachine scheduling for multitask machining
Multitasking is an important part of today’s manufacturing plants. Multitask machine tools are capable of processing multiple operations at the same time by applying a different set of part and tool holding devices. Mill-turns are multitask machines with the ability to perform a variety of operations with considerable accuracy and agility. One critical factor in simultaneous machining is to cre...
متن کاملDesign, Manufacturing and Surface quality Analysis of Machining by Self-Rotary Milling Tool
One of the disadvantages of conventional milling tools is to produce a large amount of heat in cutting zone and so making the tool warmer. As a result, the tool would be worn and its life time would be reduced. Therefore, in long time machining, it is essential to change inserts and tools, continiously. A milling tool with self rotary cutting inserts was designed and manufactured that enables i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017